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Overview of numerical methods 

• Many CFD techniques exist. 

• The most common in commercially available CFD programs are: 

– The finite volume method has the broadest applicability (~80%). 

– Finite element (~15%).  

• Here we will focus on the finite volume method. 

• There are certainly many other approaches (5%), including: 

– Finite difference. 

– Finite element. 

– Spectral methods. 

– Boundary element. 

– Vorticity based methods. 

– Lattice gas/lattice Boltzmann. 

– And more! 
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• Divide the domain into control volumes.  

 

 

 

 

 

• Integrate the differential equation over the control volume and 

apply the divergence theorem. 

• To evaluate derivative terms, values at the control volume faces 

are needed: have to make an assumption about how the value 

varies. 

• Result is a set of linear algebraic equations: one for each control 

volume. 

• Solve iteratively or simultaneously. 
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Finite volume: basic methodology 
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Control volume 

Computational node 

Boundary node 

Cells and nodes 

• Using finite volume method, the solution domain is subdivided 

into a finite number of small control volumes (cells) by a grid. 

• The grid defines the boundaries of the control volumes while the 

computational node lies at the center of the control volume. 

• The advantage of FVM is that the integral conservation is 

satisfied exactly over the control volume. 
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• The net flux through the control volume boundary is the sum of 

integrals over the four control volume faces (six in 3D). The 

control volumes do not overlap. 

• The value of the integrand is not available at the control volume 

faces and is determined by interpolation. 
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Discretization example 

• To illustrate how the conservation equations used in CFD can be 

discretized we will look at an example involving the transport of a 

chemical species in a flow field. 

• The species transport equation (constant density, incompressible 

flow) is given by:  

 

 

• Here c is the concentration of the chemical species and D is the 

diffusion coefficient. S is a source term. 

• We will discretize this equation (convert  

 it to a solveable algebraic form) for the  

 simple flow field shown on the right,  

 assuming steady state conditions. 
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Discretization example - continued 

• The balance over the control volume is given by: 

 

 

 

• This contains values at the faces, which need to be determined 

from interpolation from the values at the cell centers. 
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Discretization example - continued 

• The simplest way to determine the values at the faces is by using 

first order upwind differencing. Here, let’s assume that the value 

at the face is equal to the value in the center of the cell upstream 

of the face. Using that method results in: 

 

 

 

 

• This equation can then be rearranged to provide an expression 

for the concentration at the center of cell P as a function of the 

concentrations in the surrounding cells, the flow field, and the 

grid. 
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Discretization example - continued 

• Rearranging the previous equation results in: 

 

 

 

 

 

 

• This equation can now be simplified to: 

 

 

 

 

 

• Here nb refers to the neighboring cells. The coefficients anb and b will be 
different for every cell in the domain at every iteration. The species 
concentration field can be calculated by recalculating cP from this 
equation iteratively for all cells in the domain. 
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General approach 

• In the previous example we saw how the species transport 

equation could be discretized as a linear equation that can be 

solved iteratively for all cells in the domain.  

• This is the general approach to solving partial differential 

equations used in CFD. It is done for all conserved variables 

(momentum, species, energy, etc.). 

• For the conservation equation for variable f, the following steps 

are taken: 

– Integration of conservation equation in each cell. 

– Calculation of face values in terms of cell-centered values. 

– Collection of like terms. 

• The result is the following discretization equation (with nb 

denoting cell neighbors of cell P): 
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General approach - relaxation 

• At each iteration, at each cell, a new value for variable f in cell P 

can then be calculated from that equation. 

• It is common to apply relaxation as follows: 

 

 

• Here U is the relaxation factor: 

– U < 1 is underrelaxation. This may slow down speed of convergence 

but increases the stability of the calculation, i.e. it decreases the 

possibility of divergence or oscillations in the solutions. 

– U = 1 corresponds to no relaxation. One uses the predicted value of 

the variable. 

– U > 1 is overrelaxation. It can sometimes be used to accelerate 

convergence but will decrease the stability of the calculation. 
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Underrelaxation recommendation 

• Underrelaxation factors are there to suppress oscillations in the 

flow solution that result from numerical errors.  

• Underrelaxation factors that are too small will significantly slow 

down convergence, sometimes to the extent that the user thinks 

the solution is converged when it really is not. 

• The recommendation is to always use underrelaxation factors 

that are as high as possible, without resulting in oscillations or 

divergence. 

• Typically one should stay with the default factors in the solver. 

• When the solution is converged but the pressure residual is still 

relatively high, the factors for pressure and momentum can be 

lowered to further refine the solution. 
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• The iterative process is repeated until the change in the variable 

from one iteration to the next becomes so small that the solution 

can be considered converged. 

• At convergence: 

– All discrete conservation equations (momentum, energy, etc.) are 

obeyed in all cells to a specified tolerance. 

– The solution no longer changes with additional iterations. 

– Mass, momentum, energy and scalar balances are obtained. 

• Residuals measure imbalance (or error) in conservation 

equations. 

• The absolute residual at point P is defined as: 
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• Residuals are usually scaled relative to the local value of the 

property f in order to obtain a relative error: 

 

 

 

• They can also be normalized, by dividing them by the maximum 

residual that was found at any time during the iterative process. 

• An overall measure of the residual in the domain is: 

 

 

 

• It is common to require the scaled residuals to be on the order of 

1E-3 to 1E-4 or less for convergence. 
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Convergence - continued 
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Notes on convergence 

• Always ensure proper convergence before using a solution: 

unconverged solutions can be misleading!! 

• Solutions are converged when the flow field and scalar fields are 

no longer changing. 

• Determining when this is the case can be difficult. 

• It is most common to monitor the residuals. 
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Monitor residuals 

• If the residuals have met the 

specified convergence criterion 

but are still decreasing, the 

solution may not yet be 

converged. 

• If the residuals never meet the 

convergence criterion, but are no 

longer decreasing and other 

solution monitors do not change 

either, the solution is converged. 

• Residuals are not your solution! 

Low residuals do not 

automatically mean a correct 

solution, and high residuals do 

not automatically mean a wrong 

solution. 

 

• Final residuals are often higher 

with higher order discretization 

schemes than with first order 

discretization. That does not 

mean that the first order solution 

is better! 

• Residuals can be monitored 

graphically also. 
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Other convergence monitors 

• For models whose purpose is to 

calculate a force on an object, 

the predicted force itself should 

be monitored for convergence. 

• E.g. for an airfoil, one should 

monitor the predicted drag 

coefficient. 

 

• Overall mass balance should be 

satisfied. 

• When modeling rotating 

equipment such as turbofans or 

mixing impellers, the predicted 

torque should be monitored. 

• For heat transfer problems, the 

temperature at important 

locations can be monitored. 

• One can automatically generate 

flow field plots every 50 iterations 

or so to visually review the flow 

field and ensure that it is no 

longer changing. 
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• Face values of f and f/x are found by making assumptions 

about variation of f between cell centers. 

• Number of different schemes can be devised: 

– First-order upwind scheme. 

– Central differencing scheme. 

– Power-law scheme. 

– Second-order upwind scheme. 

– QUICK scheme. 

• We will discuss these one by one. 

Numerical schemes: finding face values 
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First order upwind scheme 
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f(x) 

fP fe 

fE 

Flow direction 

• This is the simplest numerical 

scheme. It is the method that we 

used earlier in the discretization 

example. 

• We assume that the value of f at 

the face is the same as the cell 

centered value in the cell 

upstream of the face. 

• The main advantages are that it 

is easy to implement and that it 

results in very stable 

calculations, but it also very 

diffusive. Gradients in the flow 

field tend to be smeared out, as 

we will show later. 

• This is often the best scheme to 

start calculations with. 
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Central differencing scheme 

• We determine the value of f at 

the face by linear interpolation 

between the cell centered 

values. 

• This is more accurate than the 

first order upwind scheme, but it 

leads to oscillations in the 

solution or divergence if the local 

Peclet number is larger than 2. 

The Peclet number is the ratio 

between convective and diffusive 

transport: 

 

• It is common to then switch to 

first order upwind in cells where 

Pe>2. Such an approach is 

called a hybrid scheme. 
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• This is based on the analytical 

solution of the one-dimensional 

convection-diffusion equation. 

• The face value is determined 

from an exponential profile 

through the cell values. The 

exponential profile is 

approximated by the following 

power law equation: 

 

 

 

• Pe is again the Peclet number. 

• For Pe>10, diffusion is ignored 

and first order upwind is used. 

Power law scheme 
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Second-order upwind scheme 

• We determine the value of f from 

the cell values in the two cells 

upstream of the face.  

• This is more accurate than the 

first order upwind scheme, but in 

regions with strong gradients it 

can result in face values that are 

outside of the range of cell 

values. It is then necessary to 

apply limiters to the predicted 

face values. 

• There are many different ways to 

implement this, but second-order 

upwind with limiters is one of the 

more popular numerical 

schemes because of its 

combination of accuracy and 

stability. 
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QUICK scheme 

• QUICK stands for Quadratic 

Upwind Interpolation for 

Convective Kinetics. 

• A quadratic curve is fitted 

through two upstream nodes and 

one downstream node. 

• This is a very accurate scheme, 

but in regions with strong 

gradients, overshoots and 

undershoots can occur. This can 

lead to stability problems in the 

calculation. 
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Accuracy of numerical schemes 

• Each of the previously discussed numerical schemes assumes some 

shape of the function f. These functions can be approximated by Taylor 

series polynomials: 

 

 

 

• The first order upwind scheme only uses the constant and ignores the 

first derivative and consecutive terms. This scheme is therefore 

considered first order accurate. 

• For high Peclet numbers the power law scheme reduces to the first 

order upwind scheme, so it is also considered first order accurate. 

• The central differencing scheme and second order upwind scheme do 

include the first order derivative, but ignore the second order derivative. 

These schemes are therefore considered second order accurate. 

QUICK does take the second order derivative into account, but ignores 

the third order derivative. This is then considered third order accurate. 
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Hot fluid 

Cold fluid 

T = 100ºC 

T = 0ºC 

Diffusion set to zero 

k=0 

Accuracy and false diffusion (1) 

• False diffusion is numerically introduced diffusion and arises in 

convection dominated flows, i.e. high Pe number flows. 

• Consider the problem below. If there is no false diffusion, the 

temperature will be exactly 100 ºC everywhere above the 

diagonal and exactly 0 ºC everywhere below the diagonal. 

• False diffusion will occur due to the oblique flow direction and 

non-zero gradient of temperature in the direction normal to the 

flow. 

 • Grid refinement coupled 

with a higher-order 

interpolation scheme will 

minimize the false 

diffusion as shown on 

the next slide. 
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8 x 8 

64 x 64 

First-order Upwind Second-order Upwind 

Accuracy and false diffusion (2) 
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Properties of numerical schemes 

• All numerical schemes must have the following properties: 

– Conservativeness: global conservation of the fluid property f must 

be ensured. 

– Boundedness: values predicted by the scheme should be within 

realistic bounds. For linear problems without sources, those would 

be the maximum and minimum boundary values. Fluid flow is non-

linear and values in the domain may be outside the range of 

boundary values. 

– Transportiveness: diffusion works in all directions but convection 

only in the flow direction. The numerical scheme should recognize 

the direction of the flow as it affects the strength of convection versus 

diffusion. 

• The central differencing scheme does not have the 

transportiveness property. The other schemes that were 

discussed have all three of these properties. 
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Solution accuracy 

• Higher order schemes will be more accurate. They will also be 

less stable and will increase computational time. 

• It is recommended to always start calculations with first order 

upwind and after 100 iterations or so to switch over to second 

order upwind. 

• This provides a good combination of stability and accuracy. 

• The central differencing scheme should only be used for transient 

calculations involving the large eddy simulation (LES) turbulence 

models in combination with grids that are fine enough that the 

Peclet number is always less than one. 

• It is recommended to only use the power law or QUICK schemes 

if it is known that those are somehow especially suitable for the 

particular problem being studied. 
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Pressure 

• We saw how convection-diffusion equations can be solved. Such 

equations are available for all variables, except for the pressure.  

• Gradients in the pressure appear in the momentum equations, 

thus the pressure field needs to be calculated in order to be able 

to solve these equations. 

• If the flow is compressible: 

– The continuity equation can be used to compute density. 

– Temperature follows from the enthalpy equation.  

– Pressure can then be calculated from the equation of state p=p(,T). 

• However, if the flow is incompressible the density is constant and 

not linked to pressure. 

• The solution of the Navier-Stokes equations is then complicated 

by the lack of an independent equation for pressure.  
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Pressure - velocity coupling 

• Pressure appears in all three momentum equations. The velocity field 

also has to satisfy the continuity equation. So even though there is no 

explicit equation for pressure, we do have four equations for four 

variables, and the set of equations is closed. 

• So-called pressure-velocity coupling algorithms are used to derive 

equations for the pressure from the momentum equations and the 

continuity equation. 

• The most commonly used algorithm is the SIMPLE (Semi-Implicit 

Method for Pressure-Linked Equations). An algebraic equation for the 

pressure correction p’ is derived, in a form similar to the equations 

derived for the convection-diffusion equations: 

 

 

• Each iteration, the pressure field is updated by applying the pressure 

correction. The source term b’ is the continuity imbalance. The other 

coefficients depend on the mesh and the flow field. 
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Principle behind SIMPLE 

• The principle behind SIMPLE is quite simple! 

• It is based on the premise that fluid flows from regions with high 

pressure to low pressure. 

– Start with an initial pressure field. 

– Look at a cell. 

– If continuity is not satisfied because there is more mass flowing into 

that cell than out of the cell, the pressure in that cell compared to the 

neighboring cells must be too low. 

– Thus the pressure in that cell must be increased relative to the 

neighboring cells.  

– The reverse is true for cells where more mass flows out than in. 

– Repeat this process iteratively for all cells. 

• The trick is in finding a good equation for the pressure correction 

as a function of mass imbalance. These equations will not be 

discussed here but can be readily found in the literature. 
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Improvements on SIMPLE 

• SIMPLE is the default algorithm in most commercial finite volume 

codes. 

• Improved versions are: 

– SIMPLER (SIMPLE Revised). 

– SIMPLEC (SIMPLE Consistent). 

– PISO (Pressure Implicit with Splitting of Operators). 

• All these algorithms can speed up convergence because they 

allow for the use of larger underrelaxation factors than SIMPLE. 

• All of these will eventually converge to the same solution. The 

differences are in speed and stability. 

• Which algorithm is fastest depends on the flow and there is no 

single algorithm that is always faster than the other ones. 
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Finite volume solution methods 

• The finite volume solution method can either use a “segregated” 

or a “coupled” solution procedure. 

• With segregated methods an equation for a certain variable is 

solved for all cells, then the equation for the next variable is 

solved for all cells, etc. 

• With coupled methods, for a given cell equations for all variables 

are solved, and that process is then repeated for all cells. 

• The  segregated solution method is the default method in most 

commercial finite volume codes. It is best suited for 

incompressible flows or compressible flows at low Mach number.  

• Compressible flows at high Mach number, especially when they 

involve shock waves, are best solved with the coupled solver. 
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Update properties. 

Solve momentum equations (u, v, w velocity). 

Solve pressure-correction (continuity) equation. Update 

pressure, face mass flow rate. 

Solve energy, species, turbulence, and other scalar equations. 

Converged? 

Stop No Yes 

Segregated solution procedure 
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Solve continuity, momentum, energy, and species 

equations simultaneously. 

Converged? 

Stop No Yes 

Solve turbulence and other scalar equations. 

Update properties. 

Coupled solution procedure 

• When the coupled solver is used for steady state calculations it 

essentially employs a modified time dependent solution algorithm, using 

a time step Dt = CFL/(u/L) with CFL being the user specified Courant-

Friedrich-Levy number, L being a measure of the size of the cell, and u 

being a measure of the local velocities. 
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Execute segregated or coupled procedure, iterating to convergence 

Take a time step 

Requested time steps completed? 

No Yes Stop 

Update solution values with converged values at current time 

Unsteady solution procedure 

• Same procedure for segregated and coupled solvers. 

• The user has to specify a time step that matches the time variation in the 

flow. 

• If a time accurate solution is required, the solution should be converged 

at every time step. Otherwise, convergence at every time step may not 

be necessary. 
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The multigrid solver 

• The algebraic equation                                  can be solved by 

sweeping through the domain cell-by-cell in an iterative manner. 

• This method reduces local errors quickly but can be slow in 

reducing long-wavelength errors.  

• On large grids, it can take a long time to see the effect of far away 

grid points and boundaries. 

• Multigrid acceleration is a method to speed up convergence for: 

– Large number of cells. 

– Large cell aspect ratios (e.g. Dx/Dy > 20). 

– Large differences in thermal conductivity such as in conjugate heat 

transfer problems. 
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• The multigrid solver uses a sequence of grids going from fine to 

coarse. 

• The influence of boundaries and far-away points is more easily 

transmitted to the interior on coarse meshes than on fine meshes. 

• In coarse meshes, grid points are closer together in the 

computational space and have fewer computational cells between 

any two spatial locations. 

• Fine meshes give more accurate solutions. 

original grid coarse grid 

level 2 

coarse grid 

level 1 

The multigrid solver 
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• The solution on the coarser meshes is used as a starting point for 

solutions on the finer meshes. 

• The coarse-mesh solution contains the influence of boundaries 

and far neighbors. These effects are felt more easily on coarse 

meshes. 

• This accelerates convergence on the fine mesh. 

• The final solution is obtained for the original (fine) mesh. 

• Coarse mesh calculations only accelerate convergence and do 

not change the final answer. 

fine 

mesh 

corrections 

summed equations 

(or volume-averaged 

solution) 

coarse 

mesh 

The multigrid solver 
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Finite volume method - summary 

• The FVM uses the integral conservation equation applied to 

control volumes which subdivide the solution domain, and to the 

entire solution domain. 

• The variable values at the faces of the control volume are 

determined by interpolation. False diffusion can arise depending 

on the choice of interpolation scheme. 

• The grid must be refined to reduce “smearing” of the solution as 

shown in the last example. 

• Advantages of FVM: integral conservation is exactly satisfied and 

the method is not limited to grid type (structured or unstructured, 

Cartesian or body-fitted). 

• Always ensure proper convergence. 

 

 


