Additional Lecture No. 4 - Mass, Bernoulli, and Energy Equations

- This chapter deals with 3 equations commonly used in fluid mechanics
 - The mass equation is an expression of the conservation of mass principle.
 - The Bernoulli equation is concerned with the conservation of kinetic, potential, and flow energies of a fluid stream and their conversion to each other.
 - The energy equation is a statement of the conservation of energy principle.

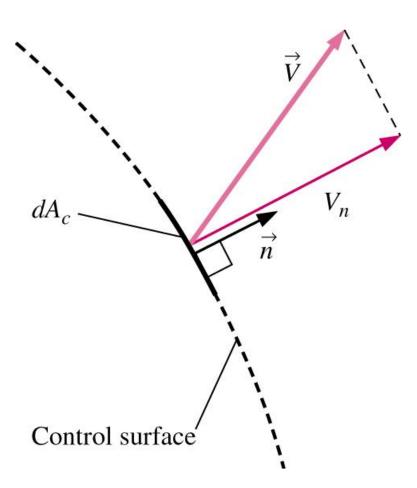
Objectives

- After completing this chapter, you should be able to
 - Apply the mass equation to balance the incoming and outgoing flow rates in a flow system.
 - Recognize various forms of mechanical energy, and work with energy conversion efficiencies.
 - Understand the use and limitations of the Bernoulli equation, and apply it to solve a variety of fluid flow problems.
 - Work with the energy equation expressed in terms of heads, and use it to determine turbine power output and pumping power requirements.

Conservation of Mass

- Conservation of mass principle is one of the most fundamental principles in nature.
- Mass, like energy, is a conserved property, and it cannot be created or destroyed during a process.
- For *closed systems* mass conservation is implicit since the mass of the system remains constant during a process.
- For control volumes, mass can cross the boundaries which means that we must keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates

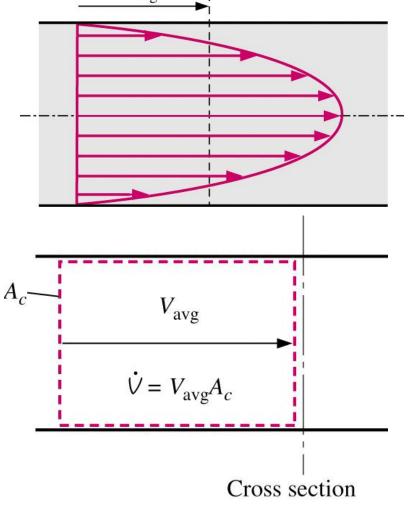


- The amount of mass flowing through a control surface per unit time is called the **mass flow rate** and is denoted *m*
- The dot over a symbol is used to indicate *time rate of change*.
- Flow rate across the entire crosssectional area of a pipe or duct is obtained by integration

$$\dot{m} = \int_{A_c} \delta m = \int_{A_c} \rho V_n dA_c$$

• While this expression for \dot{m} is exact, it is not always convenient for engineering analyses.

Average Velocity and Volume Flow Vavg



• Integral in \dot{m} can be replaced with average values of ρ and V_n

$$V_{avg} = \frac{1}{A_c} \int_{A_c} V_n dA_c$$

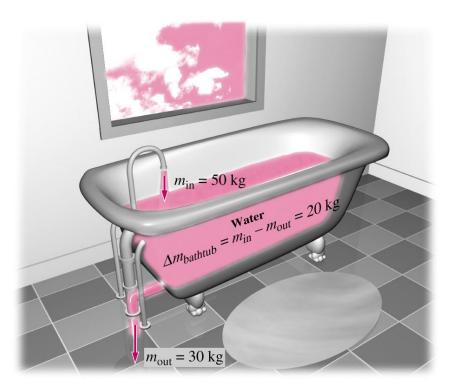
- For many flows variation of ρ is very small: $\dot{m} = \rho V_{avg} A_c$
- Volume flow rate $\frac{1}{V}$ is given by

$$\mathbf{V} = \int_{A_c} V_n dA_c = V_{avg} A_c = VA_c$$

- Note: many textbooks use Q instead of $\frac{1}{V}$ for volume flow rate.
- Mass and volume flow rates are related by

$$\dot{m} = \rho \forall$$

Conservation of Mass Principle

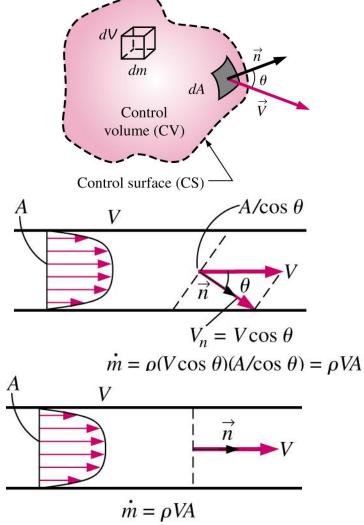


 The conservation of mass principle can be expressed as

$$\dot{m}_{in} - \dot{m}_{out} = \frac{dm_{CV}}{dt}$$

 Where m_{in} and m_{out} are the total rates of mass flow into and out of the CV, and dm_{CV}/dt is the rate of change of mass within the CV.

Conservation of Mass Principle



- For CV of arbitrary shape,
 - rate of change of mass within the CV

$$\frac{dm_{CV}}{dt} = \frac{d}{dt} \int_{CV} \rho \, d\Psi$$

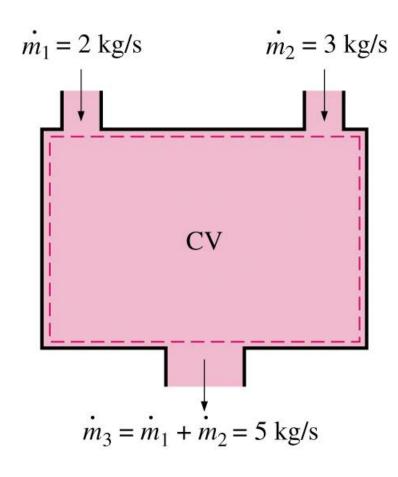
- net mass flow rate

$$\dot{m}_{net} = \int_{CS} \delta \dot{m} = \int_{CS} \rho V_n dA = \int_{CS} \rho \left(\vec{V} \, \vec{n} \right) dA$$

• Therefore, general conservation of mass for a fixed CV is:

$$\frac{d}{dt}\int_{CV}\rho\,d\Psi + \int_{CS}\rho\left(\vec{V}\,\vec{n}\right)dA = 0$$

Steady—Flow Processes



- For steady flow, the total amount of mass contained in CV is constant.
- Total amount of mass entering must be equal to total amount of mass leaving

$$\sum_{in} \dot{m} = \sum_{out} \dot{m}$$

• For incompressible flows,

$$\sum_{in} V_n A_n = \sum_{out} V_n A_n$$

Mechanical Energy

- Mechanical energy can be defined as the form of energy that can be converted to mechanical work completely and directly by an ideal mechanical device such as an ideal turbine.
- Flow P/ρ , kinetic V^2/g , and potential gz energy are the forms of mechanical energy $e_{mech} = P/\rho + V^2/g + gz$
- Mechanical energy change of a fluid during incompressible flow becomes

$$\Delta e_{mech} = \frac{P_2 - P_1}{\rho} + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1)$$

• In the absence of loses, Δe_{mech} represents the work supplied to the fluid (Δe_{mech} >0) or extracted from the fluid (Δe_{mech} <0).

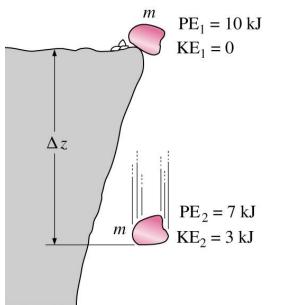
Efficiency

- Transfer of e_{mech} is usually accomplished by a rotating shaft: shaft work
- Pump, fan, propulsor: receives shaft work (e.g., from an electric motor) and transfers it to the fluid as mechanical energy
- Turbine: converts e_{mech} of a fluid to shaft work.
- In the absence of irreversibilities (e.g., friction),
 mechanical efficiency of a device or process can be defined as

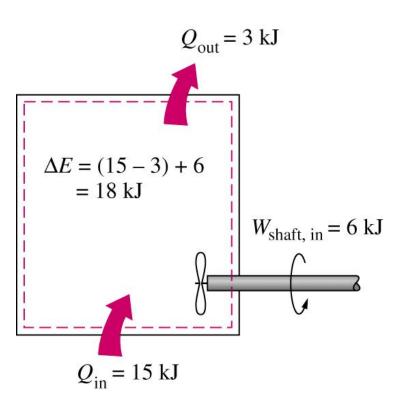
$$\eta_{mech} = \frac{E_{mech,out}}{E_{mech,in}} = 1 - \frac{E_{mech,loss}}{E_{mech,in}}$$

• If $\eta_{mech} < 100\%$, losses have occurred during conversion.

- One of the most fundamental laws in nature is the 1st law of thermodynamics, which is also known as the conservation of energy principle.
- It state that energy can be neither created nor destroyed during a process; it can only change forms



- Falling rock, picks up speed as PE is converted to KE.
- If air resistance is neglected,
 PE + KE = constant



- The energy content of a closed system can be changed by two mechanisms: *heat transfer Q* and *work transfer W*.
- Conservation of energy for a closed system can be expressed in rate form as

$$\dot{Q}_{net,in} + \dot{W}_{net,in} = \frac{dE_{sys}}{dt}$$

Net rate of heat transfer to the system:

$$Q_{net,in} = Q_{in} - Q_{out}$$

• Net power input to the system:

$$W_{net,in} = W_{in} - W_{out}$$

Recall general RTT

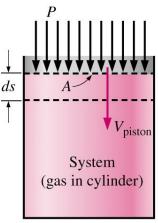
$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{CV} \rho b \, d\Psi + \int_{CS} \rho b \left(\vec{V_r} \, \vec{n}\right) dA$$

• "Derive" energy equation using *B*=*E* and *b*=*e*

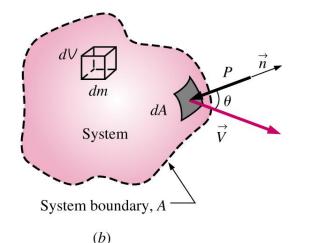
$$\frac{dE_{sys}}{dt} = \dot{Q}_{net,in} + \dot{W}_{net,in} = \frac{d}{dt} \int_{CV} \rho e d\Psi + \int_{CS} \rho e \left(\vec{V_r} \square \vec{n}\right) dA$$

• Break power into rate of shaft and pressure work

$$\dot{W}_{net,in} = \dot{W}_{shaft,net,in} + \dot{W}_{pressure,net,in} = \dot{W}_{shaft,net,in} - \int P\left(V^{\Box}\vec{n}\right) dA$$



(*a*)



- Where does expression for pressure work come from?
- When piston moves down *ds* under the influence of *F*=*PA*, the work done on the system is $\delta W_{boundary}$ =*PAds*.
- If we divide both sides by dt, we have $\delta W_{pressure} = \delta W_{boundary} = PA \frac{ds}{dt} = PAV_{piston}$
- For generalized control volumes:

$$\dot{\delta W}_{pressure} = -P \, dA \, V_n = -P \, dA \left(\vec{V} \cdot \vec{n} \right)$$

- Note sign conventions:
 - $-\vec{n}$ is outward pointing normal
 - Negative sign ensures that work done is positive when is done *on* the system.

 Moving integral for rate of pressure work to RHS of energy equation results in:

$$Q_{net,in} + W_{shaft,net,in} = \frac{d}{dt} \int_{CV} \rho e d \stackrel{\cdot}{\nabla} + \int_{CS} \left(\frac{P}{\rho} + e\right) e \left(\vec{V_r} \cdot \vec{n}\right) dA$$

 Recall that P/p is the flow work, which is the work associated with pushing a fluid into or out of a CV per unit mass.

 As with the mass equation, practical analysis is often facilitated as averages across inlets and exits

$$Q_{net,in} + W_{shaft,net,in} = \frac{d}{dt} \int_{CV} \rho e d \vec{\nabla} + \sum_{out} \dot{m} \left(\frac{P}{\rho} + e\right) - \sum_{in} \dot{m} \left(\frac{P}{\rho} + e\right)$$
$$m = \int_{A_c} \rho \left(\vec{V} \cdot \vec{n}\right) dA_c$$

• Since $e=u+ke+pe = u+V^2/2+gz$

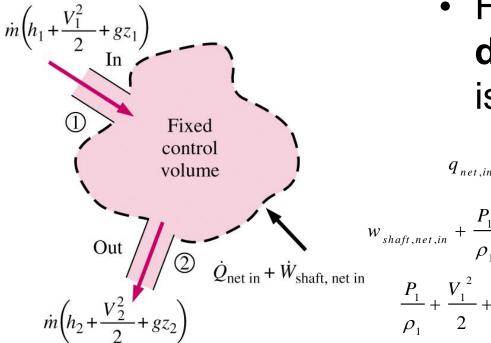
$$Q_{net,in} + W_{shaft,net,in} = \frac{d}{dt} \int_{CV} \rho e d \stackrel{\cdot}{V} + \sum_{out} \dot{m} \left(\frac{P}{\rho} + u + \frac{V^2}{2} + gz \right) - \sum_{in} \dot{m} \left(\frac{P}{\rho} + u + \frac{V^2}{2} + gz \right)$$

Energy Analysis of Steady Flows (V^2)

$$Q_{net,in} + W_{shaft,net,in} = \sum_{out} \dot{m} \left(h + \frac{V}{2} + gz \right) - \sum_{in} \dot{m} \left(h + \frac{V}{2} + gz \right)$$

- For steady flow, time rate of change of the energy content of the CV is zero.
- This equation states: the net rate of energy transfer to a CV by heat and work transfers during steady flow is equal to the difference between the rates of outgoing and incoming energy flows with mass.

Energy Analysis of Steady Flows



 For single-stream devices, mass flow rate is constant.

$$q_{net,in} + w_{shaft,net,in} = h_2 - h_1 + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1)$$

$$f_{t,net,in} + \frac{P_1}{\rho_1} + \frac{V_1^2}{2} + gz_1 = \frac{P_2}{\rho_2} + \frac{V_2^2}{2} + gz_2 + (u_2 - u_1 - q_{net,in})$$

$$P_1 + V_1^2 + Q_2 + V_2^2 + Q_2 + Q_$$

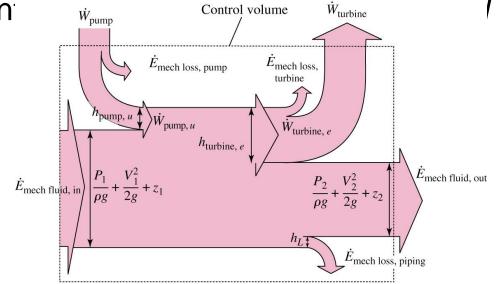
$$\frac{1}{\rho_1} + \frac{1}{2} + gz_1 + w_{pump} = \frac{1}{\rho_2} + \frac{1}{2} + gz_2 + w_{turbine} + e_{mech,loss}$$

Energy Analysis of Steady Flows

• Divide by g to get each term in units of length

$$\frac{P_1}{\rho_1 g} + \frac{V_1^2}{2g} + z_1 + h_{pump} = \frac{P_2}{\rho_2 g} + \frac{V_2^2}{2g} + z_2 + h_{turbine} + h_L$$

Magnitude of each term is now expressed as an equivalen \dot{W}_{pump} Control volume \dot{W}_{turbine} /



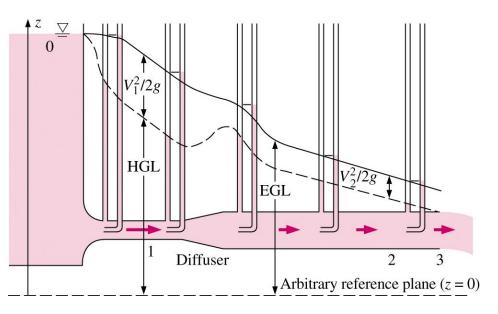
The Bernoulli Equation

 If we neglect piping losses, and have a system without pumps or turbines

$$\frac{P_1}{\rho_1 g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho_2 g} + \frac{V_2^2}{2g} + z_2$$

- This is the Bernoulli equation
- It can also be derived using Newton's second law of motion.
- 3 terms correspond to: Static, dynamic, and hydrostatic head (or pressure).

HGL and EGL



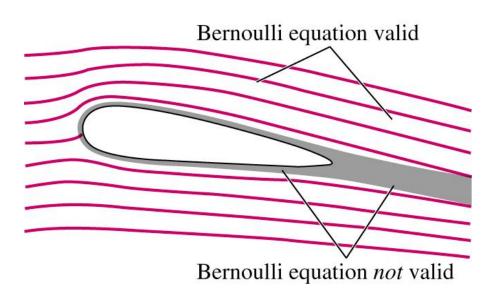
- It is often convenient to plot mechanical energy graphically using heights.
- Hydraulic Grade Line

$$HGL = \frac{P}{\rho g} + z$$

 Energy Grade Line (or total energy)

$$EGL = \frac{P}{\rho g} + \frac{V^2}{2g} + z$$

The Bernoulli Equation



- The Bernoulli equation is an approximate relation between pressure, velocity, and elevation and is valid in regions of steady, incompressible flow where net frictional forces are negligible.
- Equation is useful in flow regions outside of boundary layers and wakes.

The Bernoulli Equation

- Limitations on the use of the Bernoulli Equation
 - Steady flow: d/dt = 0
 - Frictionless flow
 - No shaft work: $w_{pump} = w_{turbine} = 0$
 - Incompressible flow: ρ = constant
 - No heat transfer: $q_{net,in}=0$
 - Applied along a streamline (except for irrotational flow)