Additional Lecture No. 6 - Flow in Pipes

Objectives

1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow
2. Calculate the major and minor losses associated with pipe flow in piping networks and determine the pumping power requirements
3. Understand the different velocity and flow rate measurement techniques and learn their advantages and disadvantages

Introduction

- Average velocity in a pipe
- Recall-because of the no-slip condition, the velocity at the walls of a pipe or duct flow is zero
- We are often interested only in $V_{\text {avg }}$, which we usually call just V (drop the subscript for convenience)
- Keep in mind that the no-slip condition causes shear stress and friction along the pipe walls

Introduction

- For pipes of constant diameter and incompressible flow
- $V_{\text {avg }}$ stays the same down the pipe, even if the velocity profile changes
- Why? Conservation of

Introduction

- For pipes with variable diameter, m is still the same due to conservation of mass, but $V_{1} \neq V_{2}$

Laminar and Turbulent Flows
 \section*{Laminar Flow}
 \section*{Turbulent Flow}

Can be steady or unsteady.
(Steady means that the flow field at any instant in time is the same as at any other instant in time.)

Can be one-, two-, or three-dimensional.

Has regular, predictable behavior

Analytical solutions are possible (see Chapter 9).

Occurs at low Reynolds numbers.

Is always unsteady.
Why? There are always random, swirling motions (vortices or eddies) in a turbulent flow.

Note: However, a turbulent flow can be steady in the mean. We call this a stationary turbulent flow.

Is always three-dimensional.
Why? Again because of the random swirling eddies, which are in all directions.
Note: However, a turbulent flow can be 1-
D or 2-D in the mean.
Has irregular or chaotic behavior (cannot predict exactly - there is some randomness associated with any turbulent flow.

No analytical solutions exist! (It is too complicated, again because of the 3-D, unsteady, chaotic swirling eddies.)

Occurs at high Reynolds numbers.

Laminar and Turbulent Flows

- Critical Reynolds number

Definition of Reynolds number

$\left(\mathrm{Re}_{\mathrm{cr}}\right)$ for flow in a round pipe
$\mathrm{Re}<2300 \Rightarrow$ laminar
$2300 \leq \operatorname{Re} \leq 4000 \Rightarrow$ transitional
Re $>4000 \Rightarrow$ turbulent

- Note that these values are approximate.
- For a given application, Recr depends upon
- Pipe roughness
- Vibrations
- Upstream fluctuations, disturbances (valves, elbows, etc. that may disturb the flow)

Laminar and Turbulent Flows

Circular tube:

$$
D_{h}=\frac{4\left(\pi D^{2 / 4}\right)}{\pi D}=D
$$

Square duct:

$$
D_{h}=\frac{4 a^{2}}{4 a}=a
$$

$$
D_{h}=\frac{4 a b}{2(a+b)}=\frac{2 a b}{a+b}
$$

- For non-round pipes, define the hydraulic diameter
$D_{h}=4 A_{c} / P$
$A_{c}=$ cross-section area
$P=$ wetted perimeter
- Example: open channel $A_{c}=0.15$ * $0.4=0.06 \mathrm{~m}^{2}$

$P=0.15+0.15+0.5=0.8 \mathrm{~m}$
Don't count free surface, since it does not contribute to friction along pipe walls!
$D_{h}=4 A_{d} / P=4 * 0.06 / 0.8=0.3 \mathrm{~m}$
What does it mean? This channel flow is equivalent to a round pipe of diameter 0.3 m (approximately).

The Entrance Region

- Consider a round pipe of diameter D. The flow can be laminar or turbulent. In either case, the profile develops downstream over several diameters called the entry length $L_{h} . L_{h} / D$ is a function of Re.

Hydrodynamically fully developed region

Fully Developed Pipe Flow

- Comparison of laminar and turbulent flow

There are some major differences between laminar and turbulent fully developed pipe f
Laminar

- Can solve exactly
- Flow is steady
- Velocity profile is parabolic

- Pipe roughness not important

It turns out that $\mathrm{V}_{\text {avg }}=1 / 2 \mathrm{U}_{\text {max }}$ and $\mathrm{u}(\mathrm{r})=2 \mathrm{~V}_{\text {avg }}\left(1-\mathrm{r}^{2} / \mathrm{R}^{2}\right)$

Fully Developed Pipe Flow

Turbulent

- Cannot solve exactly (too complex)
- Flow is unsteady (3D swirling eddies), but it is steady in the mean
- Mean velocity profile is fuller (shape more like a top-hat profile, with very sharp slope at the wall)
- Pipe roughness is very important

- $\mathrm{V}_{\text {avg }} 85 \%$ of $U_{\text {max }}$ (depends on Re a bit)
- No analytical solution, but there are some good semi-empirical expressions that approximate the velocity profile shape.

Fully Developed Pipe Flow Wall-shear stress

- Recall, for simple shear flows $u=u(y)$, we had

$$
\tau=\mu d u / d y
$$

- In fully developed pipe flow, it turns out that

$$
\tau_{\mathrm{w}, \text { turb }}>\tau_{\mathrm{w}, \mathrm{lam}}
$$

Fully Developed Pipe Flow Pressure drop

- There is a direct connection between the pressure drop in a pipe and the shear stress at the wall
- Consider a horizontal pipe, fully developed, and incompressible flow

- Let's apply conservation of mass, momentum, and energy to this CV

Fully Developed Pipe Flow Pressure drop
 - Conservation of Mass

$$
\begin{gathered}
\dot{m}_{1}=\dot{m}_{2}=\dot{m} \\
\rho \dot{V}_{1}=\rho \dot{V}_{2} \rightarrow \dot{V}=\text { const } \\
V_{1} \frac{\pi D^{2}}{4}=V_{2} \frac{\pi D^{2}}{4} \rightarrow V_{1}=V_{2}
\end{gathered}
$$

- Conservation of x-momentum
$\sum F_{x}=\sum F_{x, g r a v}+\sum F_{x, p r e s s}+\sum F_{x, v i s c}+\sum F_{x, o t h e r}=\sum_{\cdots, i} \beta \dot{m} V-\sum_{i_{n}} \beta \dot{m} V$

$$
P_{1} \frac{\pi D^{2}}{4}-P_{2} \frac{\pi D^{2}}{4}-\tau_{w} \pi D L=\underbrace{\beta_{2} \dot{m} \mid V_{2}-\beta_{1} \dot{m} \vec{V}_{1}^{n}}_{\text {Terms cancel since } \beta_{1}=\beta_{2}}
$$

$$
\text { and } V_{1}=V_{2}
$$

Fully Developed Pipe Flow Pressure drop
 - Thus, x-momentum reduces to

$$
\left(P_{1}-P_{2}\right) \frac{\pi D^{2}}{4}=\tau_{w} \pi D L \quad \text { or } \quad P_{1}-P_{2}=4 \tau_{w} \frac{L}{D}
$$

- Energy equation (in head form)

Velocity terms cancel again because $\mathrm{V}_{1}=\mathrm{V}_{2}$, and $\alpha_{1}=\alpha_{2}$ (shape not changing)

$$
P_{1}-P_{2}=\rho g h_{L}
$$

$h_{L}=$ irreversible head loss \& it is felt as a pressure drop in the pipe

Fully Developed Pipe Flow Friction Factor

- From momentum CV analysis

$$
P_{1}-P_{2}=4 \tau_{w} \frac{L}{D}
$$

- From energy CV analysis $P_{1}-P_{2}=\rho g h_{L}$
- Equating the two gives

$$
4 \tau_{w} \frac{L}{D}=\rho g h_{L} \quad h_{L}=\frac{4 \tau_{w}}{\rho g} \frac{L}{D}
$$

- To predict head loss, we need to be able to calculate τ_{w}. How?
- Laminar flow: solve exactly
- Turbulent flow: rely on empirical data (experiments)
- In either case, we can benefit from dimensional analysis!

Fully Developed Pipe Flow Friction Factor

$\square \tau_{\mathrm{w}}=$ func $(\rho, \mathrm{V}, \mu, \mathrm{D}, \varepsilon)$
$\varepsilon=$ average roughness of the inside wall of the pipe
\square-analysis gives

$$
\begin{aligned}
\Pi_{1} & =f \\
\Pi_{2} & =R e
\end{aligned}
$$

$$
f=\frac{8 \tau_{w}}{\rho V^{2}}
$$

$$
R e=\frac{\rho V D}{\mu}
$$

$$
\Pi_{3}=\frac{\epsilon}{D}
$$

$$
\epsilon / D=\text { roughness factor }
$$

$$
\Pi_{1}=\operatorname{func}\left(\Pi_{2}, \Pi_{3}\right) \quad f=\operatorname{func}(\operatorname{Re}, \epsilon / D)
$$

Fully Developed Pipe Flow Friction Factor

- Now go back to equation for h_{L} and substitute f for τ_{w}

$$
\begin{array}{rc}
h_{L}=\frac{4 \tau_{w}}{\rho g} \frac{L}{D} & f=\frac{8 \tau_{w}}{\rho V^{2}} \rightarrow \tau_{w}=f \rho V^{2} / 8 \\
h_{L}=f \frac{L}{D} \frac{V^{2}}{2 g}
\end{array}
$$

- Our problem is now reduced to solving for Darcy friction factor f - Recall $f=\operatorname{func}(\operatorname{Re}, \epsilon / D) \quad$ But for laminar flow, roughness
- Therefore
- Laminar flow: $\mathfrak{f}=64 / \operatorname{Re}$ (exact)
- Turbulent flow: Use charts or empirical equations (Moody Chart, a famous plot of f vs. Re and ε / D)

The Moody Chart

Fully Developed Pipe Flow Friction Factor

- Moody chart was developed for circular pipes, but can be used for non-circular pipes using hydraulic diameter
- Colebrook equation is a curve-fit of the data which is convenient for computations

$$
\frac{1}{\sqrt{f}}=-2.0 \log \left(\frac{\epsilon / D}{3.7}+\frac{2.51}{R e \sqrt{f}}\right)
$$

Implicit equation for f which can be solved using the root-finding algorithm

- Both Moody chart and Colebrook equation are accurate to $\pm 15 \%$ due to roughness size, experimental error, curve fitting of data, etc.

Types of Fluid Flow Problems

- In design and analysis of piping systems, 3 problem types are encountered

1. Determine $\Delta \mathrm{p}$ (or h_{L}) given $\mathrm{L}, \mathrm{D}, \mathrm{V}$ (or flow rate) Can be solved directly using Moody chart and Colebrook equation
2. Determine V, given L, D, $\Delta \mathrm{p}$
3. Determine D, given $L, \Delta p, V$ (or flow rate)

Types 2 and 3 are common engineering design problems, i.e., selection of pipe diameters to minimize construction and pumping costs

- However, iterative approach required since both V and D are in the Reynolds number.

Types of Fluid Flow Problems

- Explicit relations have been developed which eliminate iteration. They are useful for quick, direct calculation, but introduce an additional 2\% error

$$
\begin{gathered}
h_{L}=1.07 \frac{\dot{\mathcal{V}}^{2} L}{g D^{5}}\left\{\ln \left[\frac{\epsilon}{3.7 D}+4.62\left(\frac{\nu D}{\dot{\mathcal{V}}}\right)^{0.9}\right]\right\}^{-2} \begin{array}{l}
10^{-6}<\epsilon / D<10^{-2} \\
3000<R e<3 \times 10^{8}
\end{array} \\
\dot{\mathcal{V}}=-0.965\left(\frac{g D^{5} h_{L}}{L}\right)^{0.5} \ln \left[\frac{\epsilon}{3.7 D}+\left(\frac{3.17 \nu^{2} L}{g D^{3} h_{L}}\right)^{0.5}\right] \quad R e>2000 \\
D=0.66\left[\epsilon^{1.25}\left(\frac{L \dot{\mathcal{V}}^{2}}{g h_{L}}\right)^{4.75}+\nu \dot{\mathcal{V}}^{9.4}\left(\frac{L}{g h_{L}}\right)^{5.2}\right]^{0.04} \begin{array}{l}
10^{-6}<\epsilon / D<10^{-2} \\
5000<R e<3 \times 10^{8}
\end{array}
\end{gathered}
$$

Minor Losses

- Piping systems include fittings, valves, bends, elbows, tees, inlets, exits, enlargements, and contractions.
- These components interrupt the smooth flow of fluid and cause additional losses because of flow separation and mixing
- We introduce a relation for the minor losses associated with these components

$$
h_{L}=K_{L} \frac{V^{2}}{2 g}
$$

- K_{L} is the loss coefficient.
- Is different for each component.
- Is assumed to be independent of Re.
- Typically provided by manufacturer or generic table.

Minor Losses

- Total head loss in a system is comprised of major losses (in the pipe sections) and the minor losses (in the components)

$$
\begin{gathered}
h_{L}=h_{L, \text { major }}+h_{L, \text { minor }} \\
h_{L}=\underbrace{\sum_{i} f_{i} \frac{L_{i}}{D_{i}} \frac{V_{i}^{2}}{2 g}}_{\text {i pipe sections }}+\underbrace{\sum_{j} K_{L, j} \frac{V_{j}^{2}}{2 g}}_{\text {j components }}
\end{gathered}
$$

- If the piping system has constant diameter

$$
h_{L}=\left(f \frac{L}{D}+\sum K_{L}\right) \frac{V^{2}}{2 g}
$$

Minor Losses

Here are some sample loss coefficients for various minor loss components. More values are listed in Table 8-4, page 350 of the Çengel-Cimbala textbook:

Pipe Inlet

Reentrant: $K_{L}=0.80$

$$
(t \ll D \text { and } l \approx 0.1 D)
$$

Sharp-edged: $K_{L}=0.50$ Well-rounded $(r / D>0.2) . K_{1}=0.03$ Slightly rounded ($r^{\prime} D=0.1$): $K_{L}=0.12$
(see Fig. 8-36)

Pipe Exit
Reentrant: $K_{L}=\alpha$

Sudden Expansion and Contraction (based on the velocity in the smaller-diameter pipe)
Sudden expansion: $K_{L}=\left(1-\frac{d^{2}}{D^{2}}\right)^{2}$

Sudden contraction: See chart.

Note: These are
backwards. The K_{L} values listed for Expansion should be those for Contraction, and vice-versa.

Note again that the larger velocity (the velocity associated with the smaller pipe section) is used by convention in the equation for minor head loss, i.e., $h_{\text {L, rias }}-K_{L} \frac{V^{2}}{2 g}$.

Flaneed: $K_{1}=0.2$

For tees, there are two values of $K_{L_{o}}$ one for branch flow and one for line flow.

Piping Networks and Pump Selection

- Two general types of networks
- Pipes in series
- Volume flow rate is constant
- Head loss is the summation of parts
- Pipes in parallel
- Volume flow rate is the sum of the components
- Pressure loss across all branches is the same

Piping Networks and Pump Selection

- For parallel pipes, perform CV analysis between points A and B

$$
\begin{aligned}
V_{A} & =V_{B} \\
\frac{P_{A}}{\rho g}+\alpha_{1} \frac{V_{A}^{2}}{2 g}+z_{A} & =\frac{P_{B}}{\rho g}+\alpha_{2} \frac{V_{B,}^{2}}{2 g}+z_{B}+h_{L} \\
h_{L} & =\frac{\Delta P}{\rho g}
\end{aligned}
$$

- Since Δp is the same for all branches, head loss in all branches is the same

$$
h_{L, 1}=h_{L, 2} \Longleftrightarrow f_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2 g}=f_{2} \frac{L_{2}}{D_{2}} \frac{V_{2}^{2}}{2 g}
$$

Piping Networks and Pump Selection

- Head loss relationship between branches allows the following ratios to be developed

$$
\frac{V_{1}}{V_{2}}=\left(\frac{f_{2}}{f_{1}} \frac{L_{2}}{L_{1}} \frac{D_{1}}{D_{2}}\right)^{\frac{1}{2}} \quad \frac{\dot{\mathcal{V}}_{1}}{\dot{\mathcal{V}}_{2}}=\frac{D_{1}^{2}}{D_{2}^{2}}\left(\frac{f_{2}}{f_{1}} \frac{L_{2}}{L_{1}} \frac{D_{1}}{D_{2}}\right)^{\frac{1}{2}}
$$

- Real pipe systems result in a system of non-linear equations.
- Note: the analogy with electrical circuits should be obvious
- Flow flow rate (VA) : current (I)
- Pressure gradient ($\Delta \mathrm{p}$) : electrical potential (V)
- Head loss (h_{L}): resistance (R), however h_{L} is very nonlinear

Piping Networks and Pump Selection

- When a piping system involves pumps and/or turbines, pump and turbine head must be included in the energy equation

$$
\frac{P_{1}}{\rho g}+\alpha_{1} \frac{V_{1}^{2}}{2 g}+z_{1}+h_{\text {pump,u}}=\frac{P_{2}}{\rho g}+\alpha_{2} \frac{V_{2}^{2}}{2 g}+z_{2}+h_{\text {turbine }, e}+h_{L}
$$

- The useful head of the pump ($\mathrm{h}_{\text {pump,us }}$) or the head extracted by the turbine ($\mathrm{h}_{\text {turbine, }}$), are functions of volume flow rate, i.e., they are not constants.
- Operating point of system is where the system is in balance, e.g., where pump head is equal to the head losses.

Pump and systems curves

- Supply curve for $h_{\text {pump, }}$:
 determine experimentally by manufacturer. It is easy to build in functional relationship for $h_{\text {pump,u. }}$
- System curve determined from analysis of fluid dynamics equations
- Operating point is the intersection of supply and demand curves
- If peak efficiency is far from operating point, pump is wrong for that application.

