2-D Internal Flow

Axisymmetry

- Axisymmetric problems in CFX require a wedge-shaped computational domain.
- The angle defining this section is arbitrary. However, it must be small, relative to the full geometry and large enough for the mesher to resolve. (i.e. less than 30°, greater than 5°).

• Wedge-shaped elements are then created, and the continuity and momentum equations are solved in polar coordinates.

Geometry: Pipe

• Axisymmetric, laminar, internal flow through pipe.

Parameter	Symbol	Value
radius	r _o	5 mm
length	L	65 mm
mean velocity	<i>u_m</i>	1.0 mm/s
viscosity	μ	1.552E-3 kg/m-s
density	ρ	13546 kg/m ³
atmospheric pressure	P _a	1 atm

Workbench

- 1. Create new directory
- called Pipe
- 2. Open ANSYS Workbench
- 3. Create Empty Project

- 4. Save file in new directory: pipe.wbdb
- File Save
- 5. Open new geometry in DesignModeler
- On left side of page click on *New Geometry*
- 6. Select unit of length
- Select Millimeter, OK

- 7. Create rectangle for pipe flow
- Highlight XYPlane in Tree Outline.
- Toolbar Look At Face/Plane/Sketch
- Toolbar New Sketch
- Tree Outline Sketching Draw Rectangle
- Select global origin as first point by left-clicking on it when *P* is displayed.
- Select second point by left-clicking anywhere in first quadrant.

- 8. Dimension rectangle
- Tree Outline Sketching Dimensions General
- Left-click and hold line at y = 0. Drag dimension marker to easily visible location and release left mouse button to drop.
- Repeat for line at x = 0.
- In *Details View*, update dimensions such that horizontal line is 65 mm and vertical line is 5 mm.

-	Details of Sketch	1
	Sketch	Sketch1
	Sketch Visibility	Show Sketch
	Show Constraints?	No
-	Dimensions: 2	
	🗌 H1	65 mm
	🗌 V2	5 mm
-	Edges: 4	
	Line	Ln7
	Line	Ln8
	Line	Ln9
	Line	Ln10

- 9. Revolve sketch
- In Tree Outline, select Sketch1.
- From *Toolbar*, select *Revolve* **GREVOIVE** icon.
- In *Details View* for *Axis*, left-click *X Axis* in Viewer. Click *Apply*.
- In *Details View* for *FD1, Angle (>0)*, enter 15.
- From *Toolbar*, select *Generate if Gener*

-	icon
ale	

De	tails View	Р
-	Details of Revolve	1
	Revolve	Revolve1
	Base Object	Sketch1
	Axis	Selected
	Operation	Add Material
	Direction	Normal
	FD1, Ange (>0)	15°
	As Thin/Surface?	No
	Merge Topology?	Yes

- 10. Save Project
- On *Project Page*, select *File Save All*. When prompted, save DesignModeler file as pipe.agdb.
- 11. Open CFX-Mesh
- On Project Page with pipe.agdb highlighted, select New
 Mesh New mesh icon from left pane.
- 12. Save Mesh File
- Once CFX-Mesh opens, select *File Save*.
- Save file as **pipe.cmdb**.
- Note that it should now appear on *Project Page* as *Model*.

- 13. Create Inlet Region
- Place geometry in isometric view by selecting blue *Iso* ball on triad in *Viewer*.
- In Tree View, right-click on Regions. Insert Composite 2D Region.
- When Composite 2D Region 1 first appears in Tree View, you may enter a new name. Enter LetIn.
- In Viewer, select surface with lowest x-coordinate by dragging a box around it. In *Details View*, select *Apply*.

- 14. Create Outlet Region
- In *Tree View*, right-click on *Regions*. *Insert Composite 2D Region*.
- When Composite 2D Region 1 first appears in Tree View, you may enter a new name. Enter LetOut.
- Using left mouse button in Viewer, select surface with largest x coordinate. In *Details View*, select *Apply*.

- 15. Create Outer Wall Region
- In Tree View, right-click on Regions. Insert Composite 2D Region.
- When Composite 2D Region 1 first appears in Tree View, you may enter a new name. Enter Wall.
- Using left mouse button in Viewer, select surface with largest y – coordinate. In *Details View*, select *Apply*.

- 16. Create First Symmetry Region
- In Tree View, right-click on Regions. Insert Composite 2D Region.
- When Composite 2D Region 1 first appears in Tree View, you may enter a new name. Enter Sym1.
- Using left mouse button in Viewer, select surface with largest z – coordinate. In *Details View*, select *Apply*.

- 17. Create Second Symmetry Region
- In *Tree View*, right-click on *Regions*. *Insert Composite 2D Region*.
- When Composite 2D Region 1 first appears in Tree View, you may enter a new name. Enter Sym2.
- Using Face Selector Helper, select surface with lowest z coordinate. In *Details View*, select *Apply*.

File - Save

18. Change Mesh to 2D

- In *Tree View* under *Mesh*, select *Options*.
- Details View Meshing Strategy Option. Select Extruded
 2D Mesh.
- Details View 2D Extrusion Option Number of Layers, enter 1.
- In *Tree View* under *Mesh*, select *Extruded Periodic Pair*.
- **Details View Periodic Type Option**. Select Rotational.
- Details View Periodic Type. Right-click on first Point and select Edit. Set first point to 0, 0, 0. Hit Enter.
- **Details View Periodic Type**. Right-click on second **Point** and select **Edit**. Set second point to **1**, **0**, **0**. Hit Enter.

- 18. Change Mesh to 2D (cont.)
- Details View Extruded Periodic Pair Location 1. Select
 Sym1 from Tree View. Click Apply.
- Details View Extruded Periodic Pair Location 2. Select
 Sym2 from Tree View. Click Apply.

De	tails View	
Ξ	Extruded Periodic	Pair
	Location 1	1 Composite
	Location 2	1 Composite
Ξ	Periodic Type	
	Option	Rotational
	Point	0[mm],0[mm],0[mm]
	Point	1[mm],0[mm],0[mm]

- 19. Update Face Spacing
- In *Tree View* under *Mesh Spacing*, select *Default Face Spacing*.
- In *Details View*, set *Minimum Edge Length* to 0.05 mm.
- In *Details View*, set *Maximum Edge Length* to 0.5 mm.
- Note that Maximum Edge Length was set such that there would be approximately 10 elements through the radius.

Maximum Edge Length =
$$r_o / 10$$

De	tails View	
Ξ	Default Face Space	ing
	Option	Angular Resolution
	Angular Resolutio	30
	Minimum Edge (en	0.05
	Maximum Edge Le	0.5

20. Create Preview

• Toolbar – Generate Surface Meshes

File - Save

21. Create Mesh

- Toolbar Generate Volume Mesh
- Save file as **pipe.gtm**.
- Mesh takes a few seconds to generate.

22. Save Project

• On *Project Page*, select *File – Save All*.

23. Open CFX

On Project Page with pipe.gtm highlighted, select Create
 CFD Simulation with Mesh icon.

24. Define Model Data

- When CFX finally opens, in *Tree Outline* double-click on *Default Domain*.
- **Domain: Default Domain** Tab appears.
- General Options Domain Models Pressure Reference Pressure. Ensure it is set to 1 atm.
- Fluid Models Heat Transfer Option. Ensure it is set to Isothermal.
- Fluid Models Heat Transfer Fluid Temperature. Ensure it is set to 25 C.
- Fluid Models Turbulence Option. Ensure it is set to None (Laminar).
- Click *Apply*. Click *OK*.

Material Library

- In addition to defining your own materials, CFX has the capability of importing material properties from a large library.
- Further, created materials may be stored here for later import.
- Material types include:
 - Constant Property and Ideal Gases
 - Constant Property Liquids
 - Combustion Products
 - Solids
 - Interphase Water

- 25. Import Material from Library
- Outline Simulation. Right-click Materials. Select Import Library Data.
- Select Library Data to Import window appears.
- Under Constant Property Liquids, select Mercury Hg.
- Click OK.
- Mercury Hg now appears under Materials in Tree Outline.
- Tree Outline Simulation. Double-click on Default Domain.
- General Options Fluids List. Left-click on box.
- Fluids List window appears.
- Under Constant Property Liquids, select Mercury Hg.
- Click OK.

26. Create Inlet Boundary Condition

- Toolbar Create a Boundary Condition. Enter LetIn for Name. Click OK.
- Boundary: LetIn Basic Settings Boundary Type. Select Inlet.
- Boundary: LetIn Basic Settings Location. Select LetIn.
- Boundary: LetIn Boundary Details Mass and Momentum – Option. Ensure it is set to Normal Speed.
- Boundary: LetIn Boundary Details Mass and Momentum – Normal Speed. Enter 1.0 mm/s.
- Click *Apply*. Click *OK*.

27. Create Outlet Boundary Condition

- Toolbar Create a Boundary Condition. Enter LetOut for Name. Click OK.
- Boundary: LetOut Basic Settings Boundary Type. Select Outlet.
- Boundary: LetOut Basic Settings Location. Select LetOut.
- Boundary: LetOut Boundary Details Mass and Momentum – Option. Select Average Static Pressure.
- Boundary: LetOut Boundary Details Mass and Momentum – Relative Pressure. Enter 0 Pa.
- Click *Apply*. Click *OK*.

28. Create Wall Boundary Condition

- Toolbar Create a Boundary Condition. Enter ThatWall for Name. Click OK.
- Boundary: ThatWall Basic Settings Boundary Type. Select Wall.
- Boundary: ThatWall Basic Settings Location. Select Wall.
- Click *Apply*. Click *OK*.

29. Create First Symmetry Boundary Condition

- Toolbar Create a Boundary Condition. Enter Sym1 for Name. Click OK.
- Boundary: Sym1 Basic Settings Boundary Type. Select Symmetry.
- Boundary: Sym1 Basic Settings Location. Select Sym1.
- Click *Apply*. Click *OK*.

30. Create Second Symmetry Boundary Condition

- Toolbar Create a Boundary Condition. Enter Sym2 for Name. Click OK.
- Boundary: Sym2 Basic Settings Boundary Type.
 Select Symmetry.
- Boundary: Sym2 Basic Settings Location. Select Sym2.
- Click *Apply*. Click *OK*.

File – Save Simulation. pipe.cfx.

31. Set Solver Controls

- Toolbar Solver Control.
- Solver Control Basic Settings Max. Iterations. Ensure it is set to 100.
- Solver Control Basic Settings Fluid Timescale Control – Timescale Control. Ensure is set to Auto Timescale.
- Solver Control Basic Settings Convergence Criteria Residual Target. Ensure is set to 1E-4.
- Click *Apply*. Click *OK*.

32. Write Solver File

- In Toolbar, select Write Solver File
- Write Solver File window appears.
- Save file as **pipe.def**.
- Click Save.

🕄 Write Solver File			
Look in: 🔄 II-2007/Week 4/Pipe 💌 🖛	£ 💣 🏢 🏛	Start Solver Manager	•
`		Quit CFX-Pre	
File <u>n</u> ame: <mark>pe.def</mark>	Save 🔫	<u> </u>	
File type: CFX-Solver Files (*.def)	Cancel		
	Help		

34. Start Run

- **Define Run** window appears.
- Select Start Run.

Run Definition	
Definition File	allel Plates/parallel_plates.def 📴 📤
Initial Values File	
🔲 Interpolate Initia	al Values onto Def File Mesh
Adaption Database	
Type of Run	Full
-Parallel Environmer	nt
Run Mode	Serial
Host Name	
Partition Weighting	mode is set to Automatic.
Partition Weighting Run Environment	mode is set to Automatic.
Partition Weighting Run Environment Working Folder	mode is set to Automatic.

35. Open CFX-Post

- Once solution is completed, ANSYS CFX Solver Finished Normally window will appear.
- Select Yes when asked whether you'd like to post-process results now.

36. Create Contour Plot on Symmetry Boundary

- Contour plots of variables may be applied directly to boundaries. This is a convenient tool for quick postprocessing.
- Right-click in *Viewer*. Select *Predefined Camera View Towards – Z*.
- In *Outline* tab, double-click on *Sym1*.
- **Details View Colour Mode**. Select Variable.
- Details View Colour Variable. Ensure Pressure is selected.
- Click Apply.

37. Alter Legend

- In Outline Workspace under User Locations and Plots, double-click on Default Legend View 1.
- **Details View Definition**. Select Horizontal.
- Details View Definition Location X Justification.
 Select Center.
- Details View Definition Location Y Justification.
 Select Bottom.
- Details View Appearance Text Parameters Precision. Select Fixed.
- Click *Apply*.

38. Create Vector Plot

- Toolbar Vector
- Insert Vector window appears. Select OK.
- Details View Geometry Definition Locations. Select Sym1.
- Details View Geometry Sampling. Select Equally Spaced.
- **Details View Geometry # of Points**. Enter 200.
- Click *Apply*.
- Deselect check box next to **Sym1** in **Outline Workspace**.

39. Create Point

- In *Toolbar*, select *Location* down menu, select *Point*.
 In *Toolbar*, select *Point*.
- Insert Point window appears. Click OK.
- Details View Geometry Definition Method. Ensure it is set to XYZ.
- Details View Geometry Definition Point. Set to 0.05, 0, 0.
- Click *Apply*.
- Note that the point appears in the Viewer as a yellow crosshairs.

CFX-Post Tools

- The Tools tab in CFX-Post is a powerful post-processing utility.
- Function Calculator allows the calculation of many useful quantities across boundaries and user-specified locations.
- Mesh Calculator shows mesh quality and statistics throughout domain.

40. Use Function Calculator

- In Outline Workspace, select Tools tab. Double-click on Function Calculator.
- **Details View Function.** Select **Probe**.
- **Details View Location.** Ensure **Point 1** is selected.
- **Details View Variable.** Select Velocity u.
- Click Calculate.
- Note that the calculated value appears in the *Result* field.

0.00192929 [m s^-1]

Moody Diagram

Friction Factor

- Relates friction factor (f) to Reynolds number.
- Friction factor is independent of surface roughness in laminar flow.

$$f = \frac{64}{Re}$$

• Friction factor related to pressure differential by:

$$\Delta p = \frac{1}{2} f \frac{L}{D} \rho u_m^2$$

- 41. Calculate Pressure Drop
- In Outline Workspace, select Tools tab. Double-click on Function Calculator.
- **Details View Function**. Select areaAve.
- **Details View Location**. Select **LetIn**.
- **Details View Variable.** Select **Pressure**.
- Click Calculate.
- Note that the calculated value appears in the *Result* field.

0.041738 [Pa]

42. Save State file

- Postprocessing method may be saved and reopened later in the form of a state file (*.cst).
- Select *File Save State As*, pipe.cst.

Practice

- What is the value of Velocity v at x = 0.06 m, y = 0.003 m?
- How would this value change with increased viscosity?
- Compare the Velocity u along the axis of symmetry at the outlet with the analytical value for fully-developed, internal pipe flow:

$$u_{max} = 2 u_m$$

• Compare the numerical pressure rise from that calculated from the Moody diagram.